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1  | INTRODUC TION

The growth and virulence of many bacteria depend upon success-
fully cooperating in public goods games with other bacteria. Bacteria 
produce and secrete a range of molecules, which provide a benefit 
to the local group of cells, and so act as public goods. For example, 
iron scavenging siderophores or protein- digesting proteases (West, 
Diggle, Buckling, Gardner and Griffin, 2007). Individual cells pay 
the metabolic cost of producing these molecules, but their benefits 
are then shared as public goods with the local population of cells. 
Consequently, producing cells could potentially be out- competed 
by nonproducing cheats, who gain the benefits, without paying the 
costs. There is a large theoretical and empirical literature examining 
how various factors such as interactions between genetically identi-
cal cells (kin selection) can stabilize the production of public goods in 
bacteria (Brown & Johnstone, 2001; West & Buckling, 2003; Griffin, 
West, & Buckling, 2004; Diggle, Griffin, Campbell, & West, 2007; 
Frank, 2010a, 2010b).

In contrast, the growth and virulence of the bacteria Bacillus 
thuringiensis appear to depend upon a different type of social game 
(Raymond, West, Griffin, & Bonsall, 2012). The life cycle of these bac-
teria depends upon two steps in the host. First, after an insect host 
ingests a number of spores, the bacterial cells use a costly crystal (Cry) 
toxin to perforate the host gut and invade the host (Höfte & Whiteley, 
1989; Ibrahim, Griko, Junker, & Bulla, 2010; Raymond et al., 2012). The 
toxin is a large protein, up to 147 kilodaltons, that may form up to 35% 
of a bacteria's dry mass (Loferer- Krößbacher, Klima, & Psenner, 1998). 
Second, the bacteria multiply within the host and invest in Cry toxin 
production, causing host death and the release of bacterial spores 
(Raymond, Wyres, Sheppard, Ellis, & Bonsall, 2010). In contrast to a 
public goods scenario, the benefit of producing Cry toxin is relatively 
all or nothing—you either produce enough to invade the host or you 
do not. As producing a certain amount of total toxin is key, the strat-
egy that will be favoured by evolution could also depend upon the 
number of spores that are inside a host (Archetti, 2009; Cornforth, 
Matthews, Brown, & Raymond, 2015; Raymond & Bonsall, 2013).
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Abstract
The growth and virulence of the bacteria Bacillus thuringiensis depend on the produc-
tion of Cry toxins, which are used to perforate the gut of its host. Successful invasion 
of the host relies on producing a threshold amount of toxin, after which there is no 
benefit from producing more toxin. Consequently, the production of Cry toxin ap-
pears to be a different type of social problem compared with the public goods sce-
narios that bacteria usually encounter. We show that selection for toxin production 
is a volunteer's dilemma. We make specific predictions that (a) selection for toxin 
production depends upon an interplay between the number of bacterial cells that 
each host ingests and the genetic relatedness between those cells; (b) cheats that do 
not produce toxin gain an advantage when at low frequencies, and at high bacterial 
density, allowing them to be maintained in a population alongside toxin- producing 
cells. More generally, our results emphasize the diversity of the social games that 
bacteria play.
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We examine the evolutionary stability and dynamics of Cry toxin 
production using two different modelling approaches. First, we use a 
game theoretic approach to examine under what conditions the pro-
duction of Cry toxin is favoured (Taylor & Frank, 1996). This approach 
assumes only small variations in toxin production (weak selection) and 
looks for a single equilibrium. In contrast, in nature, there is large vari-
ation in toxin production, between cells that produce (cooperators) or 
do not produce (cheats) Cry toxin (Raymond et al., 2010, 2012). Deng 
et al. (2015) find that cheaters produce on average 30% more spores 
than cooperators. Furthermore, factors such as population density and 
cooperator frequency can fluctuate over short timescales (Gokhale & 
Hauert, 2016; Raymond et al., 2012; Schoener, 2011), and studies of 
the density of spores in the wild have shown that group sizes are very 
low suggesting that stochastic effects could be important (Collier, 
Elliot, & Ellis, 2005; Maduell, Callejas, Cabrera, Armengol, & Orduz, 
2002; Raymond et al., 2010). Therefore, our second approach is to 
model the dynamics of a system that contains both cooperators and 
cheats, to examine how these dynamics are influenced by bacterial 
density, and the frequency of cooperators.

2  | MODEL I :  EQUILIBRIUM MODEL

We use a game theoretic approach to express the fitness of a bacte-
rial cell as a function of the probability it infects a host, β(z); and the 
number of spores it generates, f(y) — where z is the group average 
strategy and y is the individual cells strategy. We assume an infinitely 
sized population of bacteria distributed into finitely sized patches of 
n bacteria. There are nonoverlapping generations, and the bacterial 
spores disperse randomly to other patches.

We assume that the probability that a bacteria in a group of n 
cells successfully infects a host, β, is a function of their average in-
vestment, z. We model this probability using a sigmoidal curve as a 
continuously differentiable approximation of a step function: 

where the group production of toxin nz is compared to k, which is the 
threshold at which the chance of infection would be 0.5 (Cornforth, 
Sumpter, Brown, & Brännström, 2012). When the total toxin production 
is low (nz ≪ k), then the chance of infection is close to 0, as toxin produc-
tion increases 0 ≤ nz ≤ k, then the function is accelerating, and then, past 
the threshold (k < nz), the function is decelerating and asymptotes to 1.

We assume there is a linear trade- off between the energy a 
bacteria puts into producing toxin, y, and the energy available for 
growth, f — as both require the generation of protein: 

where a is the cost per unit of toxin and the baseline fecundity is 1. 
The fitness function of a focal bacterium will be the product of the 
probability it invades a host and the growth of the bacterium once it 
has successfully invaded (β(z)·f(y)): 

Equation (3) illustrates that producing the Cry toxin has a cost 
to the individual by reducing its growth, f(y). However, it is benefi-
cial to the group, including our focal individual, as it increases the 
chance of successful invasion, β(z). The production of Cry toxin is ei-
ther mutually beneficial or altruistic depending on parameter values 
(Rousset, 2004; West, Griffin and Gardner, 2007). This is a similar 
but altered formulation to Archetti and Scheuring (2011) as we use 
a multiplicative rather than additive cost. Having a multiplicative 
cost retains meaningful dimensions for the fitness by multiplying a 
probability by a relative fecundity, which allows an interpretation 
for fitness (ω) as the actual fecundity expected by an individual.

We seek an evolutionarily stable strategy (ESS), which is the in-
dividual strategy at fixation which cannot be invaded by some rare 
alternative strategy. Following Taylor and Frank (1996), we construct 
an expression for the change in inclusive fitness, ΔωIF, and solve for 
a monomorphic population that is at equilibrium: 

where W is a Lambert- W function which is strictly positive (see B) 
and r is the relatedness between the different bacterial cells infecting 
the host. We define r as the probability that two individuals share the 
same gene at a locus relative to the population average (Grafen, 1985). 
This measure is obtained by replacing the regression of the recipients’ 
phenotype on the focal individuals’ genotype (R in Taylor and Frank 
(1996)) with R =

1

n
+

n−1

n
r. Where 1/n is the chance the other individ-

ual is oneself and n−1/n is the chance of a social partner with other's 
only relatedness r to the focal individual (Pepper, 2000).

The equilibrium at z* is a maximum however it may be unreach-
able. To test whether a population under weak selection would con-
verge to equilibrium (convergence stability), we examined whether 
the second- order terms at the equilibrium were negative (Otto & 
Day, 2011). We found that: 

So the equilibrium at z* is a candidate ESS. To determine uninvadibil-
ity, we implement an extension to the Taylor and Frank (1996) ap-
proach, by interpreting the second derivative of the fitness equation 
in terms of inclusive fitness effects, therefore establishing a condi-
tion for the candidate equilibrium to be a local maximum (Cooper 
& West, 2018). In Appendix A, we show that z* is an uninvadable 
strategy as well as being convergently stable.

2.1 | The effect of relatedness

We found that increasing relatedness (r) increases individual toxin 
production. Examining the derivative of the equilibrium toxin pro-
duction (z*) with respect to relatedness (r), we found that: 

(1)�(z) =
1

1 + e−(nz−k)
,

(2)f(y) = 1−ay,

(3)
�(y, z) =
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if: a > 0, 0 ≤ r ≤ 1, n ≥ 1, and W ≥ 0.

(6)
�z∗

�r
≥ 0 ∀r; r ∈ [0, 1].
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So as relatedness (r) within the group increases, the ESS of toxin 
also increases (z*) (Appendix C). Increasing relatedness increases 
the indirect benefit from toxin production as the group chance 
of invasion, β(z), has a greater chance of being shared with kin. 
However, even when relatedness is low (r = 0), toxin production 
is favoured as it is essential to reproductive success (Figure 1).

2.2 | The effect of group size

As groups increase in size, individual toxin production initially peaks 
and then declines—when relatedness is nonzero (Figure 1a). This is 
due to the efficiency gained when close to the accelerating section 
of the sigmoidal β(z) function (near the threshold). As the benefits 
(β(z)) are accelerating, small increases in toxin production lead to 
large increases in infection chance. Past the peak toxin production, 
the greater number of individuals in the patch allows for individual 
bacteria to reduce their investment but the group remains at a high 
chance of successfully invading (see Appendix D).

2.3 | The effect of the threshold

The derivative of toxin production, z*, with respect to the threshold 
is always positive or zero: 

 

 Therefore, if more toxin is required to invade the host (higher k), 
individuals will be selected to increase their toxin production (z*).

2.4 | Cry toxin as a Volunteer's Dilemma

Our model illustrates that the production of crystal toxin by the 
bacteria is a volunteer's dilemma. Volunteer's dilemmas are a class 

of social games where the benefit is gained after a threshold in-
vestment in the good is reached and the benefit is fixed for each 
member regardless of group size or personal investment (Archetti, 
2009, 2018). The perforation caused by Cry toxin can be used by 
any organisms in the gut, and it is a public good. The Cry toxin only 
perforates the gut after a certain concentration, the good acts after 
a threshold (Equation 1). And, the benefit to the bacteria is access to 
the tissue of the host which is a binary outcome, either the bacteria 
have access or not, there is no additional benefit for exceeding the 
threshold of Cry toxin in the gut (Höfte & Whiteley, 1989; Ibrahim 
et al., 2010; Raymond et al., 2012). These qualities of the Cry toxin 
system make its production a volunteer's dilemma.

3  | MODEL I I :  COOPER ATOR–CHE AT 
DYNAMIC S

In nature, the density and fraction of spores, that either do (coop-
erators) or do not (cheats) produce Cry toxins, can be very variable 
over short temporal and spatial scales (Collier et al., 2005; Maduell 
et al., 2002; Raymond & Bonsall, 2013). We capture this ecological 
variation with a model which allows us to compare individuals that 
produce toxin at a fixed level (cooperator) against individuals which 
do not produce any toxin (cheats). We compare the relative fitness 
between these two types to determine under varying ecological 
parameters.

We assume a population of bacteria whose spores freely mix and 
are taken up at random by a host. We assume that the host ingests P 
bacterial spores. In the environment, a proportion (c) of bacteria are 
cooperators and (1−c) are cheats. For a focal individual in a group of 
P−1 social partners, there are i cooperators which are distributed: 

From Equation 3 given i cooperators in a group the payoff, π, for 
the focal bacteria producing y toxin will be as follows: 
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F IGURE  1 The equilibrium toxin production depends on group size (n) and relatedness (r). (a) When r > 0, as we increase group size, 
toxin production initially increases and then decreases. (b) The total amount of toxin produced by the group, nz*, increases with group size; 
therefore, the chance of infecting the host is always higher in larger groups. These graphs assume k = 2 and a =

2

3
 (Appendix D)

(a) (b)
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 Therefore, the overall fitness of a focal bacteria producing 
y toxin in a population of cooperators producing z toxin will be as 
follows: 

 This allows us to express the fitness of a cooperator in the pop-
ulation as ω(z, z) and that of a cheat as ω(0, z). The relative fitness of 
cheats to cooperators in the population is as follows: 

 This model assumes a large trait difference between coopera-
tors and cheaters (strong selection).

3.1 | Frequency dependence

As the proportion of cheats increases, we find that the relative fit-
ness of cheats decreases (Figure 2a). As cheats become more com-
mon, groups become dominated by cheats and the chance that a 
group produces enough toxin decreases. Why do we find frequency 
dependence when, in the simplest possible case, a public goods 
dilemma leads to selection being frequency- independent (Ross- 
Gillespie, Gardner, West, & Griffin, 2007)?

The result of frequency independence requires either (a) that 
the effect on public good production is linear or (b) that the trait 
is under weak selection. Either of these two assumptions make a 
linear approximation, using a first- order Taylor expansion, valid. And, 
such expansions are frequency- independent (Lehmann & Rousset, 
2014; Rousset, 2004). This argument is similar to the justification 
for frequency- independent selection of a trait that the selection 
gradient, s(z) = ��∕�y + r��∕�z, is constant with respect to allele 
frequency (Gore, Youk, & van Oudenaarden, 2009; Hamilton, 1964; 
Lehmann & Rousset, 2014).

However, in our model, we find that the relative fitness of a cheat 
is frequency- dependent. This is because we relax both of the assump-
tions made by Ross- Gillespie et al. (2007). We have a nonlinear syner-
gistic effect between cooperators which means that each cooperator 
or defector does not have a linear effect on the fitness of the focal 

individual, due to the step- like benefit function (β(z)). Addition or sub-
traction of a cooperator has a large effect when a group is close to the 
threshold but a much smaller effect when the group toxin production 
is already very low or very high; the benefit of a cooperator is depen-
dent on the composition of the group which is itself dependent on 
the frequency of cooperators. This synergy introduces a frequency- 
dependent term into the first- order effects of our selection gradi-
ent (Lehmann & Rousset, 2014). Secondly, we consider a game with 
strong selection which makes approximating the gradient using only 
first- order terms inappropriate. The large difference between coop-
erator and cheat strategies causes higher order terms of the relative 
fitness to matter, and these higher order terms will include frequency- 
dependent terms (Hamilton, 1964; Ross- Gillespie et al., 2007).

These two effects lead to a frequency- dependent relative fit-
ness found here—unlike the frequency independence found in 
earlier models (Ross- Gillespie et al., 2007). The synergistic game 
causes the first- order term of the Taylor expansion to be frequency- 
dependent. The strong selection causes higher order terms to be-
come more substantial. These two effects are sufficient but not 
necessary conditions for frequency dependence to arise.

3.2 | Density dependence

Increasing the density of the population, by increasing the group size 
(P) while holding the frequency of cooperators constant, increases 
relative cheat fitness. Figure 2b shows that in more dense popula-
tions, there is a greater chance that a group will have a sufficient 
number of cooperators to invade a host successfully (Ross- Gillespie, 
Gardner, Buckling, West, & Griffin, 2009). The mean number of co-
operators in a group increases with density allowing cheats to exploit 
more cooperators. In the limit, as P increases, the chance of infection 
for all patches in the population is one, (β(z*) = 1). Therefore, the fit-
ness of cheats is 1 and the fitness of all cooperators is 1−az. The 
relative fitness of cheats then approaches 1/(1−az).

3.3 | Population aggregation

The above model assumes patches form randomly from the popu-
lation with no structuring beyond random chance. We now imagine 

(10)�(y, z) =

P−1
∑

i=0

(
P − 1

i

)

ci(1−c)P−1−i
1−ay

1+e−(iz+ y− k)
.

(11)�D =

�(0, z)

�(z, z)

F IGURE  2  (a) The relative fitness of cheats is negatively frequency- dependent as cheats become more common they are more often 
aggregated together and so suffer in relative fitness to cooperators. (b) As group size increases, there is a positive density- dependent effect 
on cheat fitness, the larger the group the more chance that sufficient toxin is produced by the group. Using parameters: k = 2, a = 2/3 and 
z = 0.17

(a) (b)
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a scenario where similar strategies are clumped together, as would 
be expected if they had emerged from the same host (van Leeuwen, 
O'Neill, Matthews, & Raymond, 2015). We use a modified Poisson 
binomial distribution to model the initial member of a group bi-
asing subsequent draws towards its own type. As initial founders 
are randomly distributed, a fraction c of the groups are clumped 
around a cooperator and a fraction d around a cheat (c + d = 1).

So given that the patch is started by a cooperator, then the distri-
bution of number of cooperators among such patches is as follows: 

and similarly for cheats: 

The binomial coefficient is C(P−1, i−1) for cooperators as the 
founder individual counts for the first group member and the first 
cooperator. For the defector patches, the founder only accounts for 
the first group member, hence C(P−1, i). The two variables, δ1 and 
δ2, are terms that bias the distributions based on the founder. The 
larger their values, the more strongly the two types of aggregate. 

These two distributions represent an underlying distribution—that 
of the simpler model. We define ϕ ∊ [0, 1] as the level of aggrega-
tion and define the bias parameters as �1 = �d; �2 = �1

c

d
. When ϕ is 

one, then patches of all cooperators and all cheats form, and when 
it is zero, then there is no bias and patches form as they would in 
a binomial distribution. By expressing the bias parameters (δ1 and 
δ2), in terms of ϕ, c and d, we ensure that the sum over both distri-
butions is equal to one, and the terms are weighted probabilities.

The distribution of the number of cooperators in a patch is 
weighted by the fitness of the focal individual in such a group (the 
sum of the above two distributions), giving: 

and from this, we calculate a structured relative fitness: 
�DS = �S(0, z)∕�S(z, z)

At maximum aggregation (� = 1), cheats will do poorly against co-
operators as groups formed of all cheats have almost zero chance of 
invading the host. In the absence of aggregation (� = 0), cheats will be 
performing as if the population were unstructured, as in the previous 
model. As aggregation increases, cheats are more likely to find them-
selves in groups composed mostly of cooperators or mostly of cheats 
and very rarely a group close to an unbiased distribution.

(12)
c
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F IGURE  3 Graphs of ωS, Equation 14, using parameters: k = 2, a = 2/3 and z = 0.17. (a) When group size is low, P = 5 increasing 
aggregation leads to decreasing relative fitness for cheats regardless of the initial cooperator frequency (b) At higher group sizes (P = 10), the 
pattern is also decreasing at high cooperator frequencies; however, at middling and low densities, we see a nonmonotonic pattern with an 
intermediate aggregation causing a maximum relative fitness in cheats

(a) (b)

F IGURE  4  (a) Frequency dependence is still present in the base case of no aggregation as aggregation increases a critical point is reached 
at full aggregation where frequency dependence disappears (b) Increasing density increases cheat fitness as long as aggregation is again less 
than one. At full aggregation, the density- dependent effect disappears. Using parameters: k = 2, a = 2/3 and z = 0.17

(a) (b)



     |  315PATEL ET AL.

Intermediate levels of aggregation can, with intermediate fre-
quencies of cooperators and high densities, lead to an increase in 
cheat relative fitness (Figure 3). When group sizes are large, the ben-
efit to all members of a group of cooperators will approach one. At 
that point, any additional cooperators will perform much worse than 
additional cheats as they will be paying the cost of producing toxin 
and gaining no marginal benefit from this additional toxin (infection 
chance cannot be greater than one). Therefore, at intermediate lev-
els of aggregation, enough cooperators will be on patches to infect a 
host and be exploited by cheats. Conversely, in the defector- biased 
groups, the threshold will never be reached and cooperators per-
form poorly as they are paying a cost for little benefit and any gener-
ated benefit is being exploited by cheats. This leads to high- density 
scenarios with intermediate levels of aggregation increasing cheat 
relative fitness.

The above method of looking at the relative fitness of cheats to 
cooperator shows whether a cheat will be increasing or decreasing 
in the population. This gives a static view of the dynamics occur-
ring in the population. Our analysis shows how cheats can have 
a high enough relative fitness to invade a population and some 
predictions on what would happen as environmental and demo-
graphic parameters change. However, they cannot establish over 
the long term whether cheating is a stable strategy in a popula-
tion. In Appendix E, we show that cheat–cooperator co-existence 
can be reached dynamically from our model (Archetti, 2018; Peña, 
Lehmann, & Nöldeke, 2014).

4  | DISCUSSION

We found that the production of toxin by the bacteria B. thuring-
iensis is different from the kind of public goods game that is usually 
imagined in bacteria. The threshold nature of the toxin produc-
tion leads to a volunteer's dilemma where for each individual it 
would be optimal if another were to volunteer to produce the good 
(toxin) instead of them. We found, with a game theory approach, 
that the ESS level of toxin production (a) increases when the cells 
infecting a host are more related and (b) peaks at intermediate 
numbers of cells infecting a host (Figure 1). We then developed 
a stochastic model of the dynamics of cooperators that produce 
toxin and cheats that do not produce toxin. We found the rela-
tive fitness of cheats was greater when (a) they were less common 
(lower frequencies), (b) more cells infect each host (higher densi-
ties) (Figure 3), and (c) cells partially aggregated with the same cell 
types (relatives) (Figure 3). Our results show how ecological condi-
tions can influence the relative fitness of cheats and cooperators, 
in ways that could feedback into the population dynamics of B. 
thuringiensis and its invertebrate hosts.

4.1 | The volunteer's dilemma for public goods

The volunteer's dilemma is a very widely applicable game. Bacterial 
signalling pathways that require quorum sensing could fall under the 

umbrella of volunteer's dilemmas (Darch, West, Winzer, & Diggle, 
2012). Costly signalling in general about environmental conditions 
is likely to be a volunteer's dilemma. The production of toxins with 
threshold conditions (such as Cry toxin) is all volunteer's dilemmas. 
Identifying how nonlinear public goods games such as volunteer's di-
lemmas differ in behaviour from tradition linear public goods games 
helps us understand a diverse set of games.

Our finding that toxin production resembles a volunteer's di-
lemma game leads to some different predictions compared with 
other social traits in bacteria that have been studied (Brown, 1999; 
Brown & Johnstone, 2001; Frank, 2010a; Ross- Gillespie et al., 2007, 
2009; West & Buckling, 2003). We found that individual investment 
(toxin production) is highest at intermediate group sizes, that the fit-
ness of cheats can depend upon their frequency in the population 
(frequency dependence) in well- mixed populations and that interme-
diate levels of aggregation can increase the relative fitness of cheats 
(Archetti, 2009, 2018). In contrast, in linear public goods games, toxin 
production is not frequency- dependent in well- mixed populations, 
and intermediate levels of aggregation decrease the relative fitness of 
cheats (Brown & Johnstone, 2001; Ross- Gillespie et al., 2007, 2009; 
West & Buckling, 2003).

Our result that cheater fitness is dependent upon the fre-
quency in the population contrasts with Hamilton (1964) “gift from 
god” that cooperator fitness should be independent of frequency. 
Our analyses differ from Hamilton's in two ways. Firstly, in the 
volunteer's dilemma, each additional player has a nonlinear effect 
(nonadditivity) on the benefit, which means that even when look-
ing at first- order terms frequency is present as a variable (Rousset, 
2004). Secondly, in our models, we assume that the cheater pro-
duces no toxin and the cooperator produces a large quantity, lead-
ing to strong selection, which means that linearizing the relative 
fitness is no longer appropriate as higher order terms have large ef-
fects (Gore et al., 2009; Lehmann & Rousset, 2014; Ross- Gillespie 
et al., 2007). In nature, Cry toxin genes often occur on plasmids so 
large loss and gain of function mutations are possible; therefore, 
we consider a strong selection model to be more accurate for the 
natural dynamics (Ibrahim et al., 2010). A more explicit model with 
a continuous scale of toxin production would extend our model to 
cover a greater number of biological scenarios.

4.2 | Bt in the wild

Our results are supported by both observational and experimental 
data from field populations of B. thuringiensis. Consistent with our 
prediction that frequency- dependent selection can lead to coop-
erators and cheats co-existing, natural populations show variation in 
the level of Cry toxin production, with both producers and nonpro-
ducers co-existing (Raymond & Bonsall, 2013; Raymond et al., 2010, 
2012). Also, as predicted by our model, experimental manipulations 
have found that the relative fitness of cheats is higher when they 
are at lower frequencies in the populations and at higher densities 
(frequency and density- dependent selection) (Raymond et al., 2012).
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Our model also makes novel testable predictions. We predicted 
that the fitness of cells that do not produce toxin (cheaters) depends 
upon an interaction between aggregation and density (Figure 4), 
and that toxin production should peak at intermediate group sizes 
(Figure 1). These predictions could be tested with field manipulations 
or experimental evolution. Our results also suggest the possibility for 
interactions between evolutionary and ecological (population) dy-
namics that require further theoretical and empirical work. For exam-
ple, low cell densities at the start of a season would favour cells that 
produce toxin (cooperators), which would lead to an increase in cell 
densities. This would favour cells that do not produce toxin (cheat-
ers), which could reduce cell densities and now favour toxin producers 
again. Furthermore, these changes in cell densities and the frequency 
of toxin producers would also impact on the population dynamics of 
their invertebrate hosts, which could also influence the number of 
cells infecting each host (Raymond et al., 2012). These dynamics could 
potentially lead to seasonal patterns and/or intermittent epidemics of 
B. thuringiensis. The interplay of evolutionary and ecological dynamics 
between toxin nonproducers and toxin producers has previously been 
demonstrated over the production of an enzyme to break down su-
crose in yeast (Gore et al., 2009; Sanchez & Gore, 2013).
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APPENDIX A : Uninvadibility condition
We construct a measure of the change in inclusive fitness caused by 
changing the focal actors strategy. This is done by expanding the total 
derivative of the fitness function with respect to a dummy variable for 
the underlying gene, which yields the expanded derivative (Taylor & 
Frank, 1996): 

 Following from Taylor and Frank (1996), we make the substitutions 
of the phenotypic derivatives for regression coefficients and then 
simplify to get an expression of change in inclusive fitness: 

In the paper, we then analyse the behaviour of ΔωIF and Δ��

IF
 to 

characterize the equilibrium as maximal and convergent. Cooper and 
West (2018) method is used to determine whether the equilibrium is 
unavailable. In brief, we consider the second derivative of the total 
derivative taken to obtain the inclusive fitness effects (Taylor & 
Frank, 1996). This expands into a long chain rule where we drop all 
higher order terms (∂g2 etc.) as negligible and substitute the regres-
sion coefficients as before, leaving us with: 

 When this expression is less than zero, we can say the equilibrium 
found is uninvaidable.

APPENDIX B: Sign of the ProductLog
W is a Lambert- W function which is strictly positive. The Lambert- W 
function or ProductLog function is the inverse of the functions in 
form X eX: 

 In this case, the function in full is as follows: 

 From the above we can see that—assuming: a > 0, 0 ≤ r ≤ 1, n ≥ 1, 
k ≥ 0—then the function within the brackets will be positive and 
therefore the value of the function will be a positive real number.

APPENDIX C : Analysis of the effect of relatedness

 The expression obtained in equation 20 is indeed always greater 
than or equal to zero for all values of r in the internal [0, 1]. We can 
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F IGURE  5 This figure shows how equilibrium toxin reacts to the assumptions of cost and threshold made in the paper
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see this by first remembering that the function W is always positive 
for any parameter set which is biologically reasonable—a > 0, 
0 ≤ r ≤ 1, n ≥ 1, k ≤ 0. We then see that the first term is positive in the 
denominator (a squared term) and negative or zero in the numerator 
(1−n where n ≥ 1), negating a negative is of course positive so the 
first term has positive effect on slope. The second term is also nega-
tive in the numerator as r−1 is always zero or negative. Again, it has a 
positive effect as it is negated from the slope. Therefore, as long as 
the parameters are biologically reasonable, the effect of increasing r 
is to increase investment in the toxin an individual produces.

APPENDIX D : Parameter sweep for the effect of group size
In the paper, we assume a cost of two- thirds and a threshold of two 
in all scenarios. This was done so that in the case of two individu-
als, total investment by both is necessary to reach the threshold 
value in β(z). The reason that the cost was set to 2

3
 was to represent 

the fact that the trade- off is against future investment not current 
investment. In Figure 5, we can see a greater range of parameters 
which are presented here to show that the patterns found are gen-
erally true across a reasonable range of parameter space.

APPENDIX E : Gain function and interior rest points
A property of the pay- off ω(z, y) (Equation 10) is that it is a polynomial 
in Bernstein form (Peña, Nöldeke, & Lehmann, 2015; Peña et al., 2014). 
This allows us to draw general conclusions about the shape and behav-
iour of this function by looking at a simple gain function. In essence, we 
can calculate ai as the pay- off for cooperating when i others cooperate 
and bi as the pay- off when defecting and i others cooperate. 

 

 These are used to generate a measure of the gain from switching 
given i cooperators: 

 which gives a gain sequence: 

 Now the purpose of this process is that the signs of the elements in 
the gain sequence, d, tell us the stability of the two trivial rest states 
of the system and the number and stability of any interior rest points, 
assuming evolution occurs in an infinitely large well- mixed popula-
tion (Peña et al., 2014). We are interested in three properties of the 
sequence:

1. If the sign of the first element (d0) is negative, then the rest 
state of full defection is stable.

2. If the last element of the sequence (dn) is positive, then the rest 
point of full cooperation is stable.

3. If there is one sign change in the sequence, then there exists a 
unique interior rest point; furthermore, if the first element is posi-
tive, then both trivial rest cases (all defect, all cooperate) are un-
stable and the interior point is stable.

Figure 6 shows the case with the parameters: a =
2

3
, n = 10 and 

k = 2.  There exists a parameter range for the cooperating strategy 
between z = (0.1,0.5) where there is a stable interior rest point—co-
operators and defectors co- exist. When the trait is sufficiently low, 
then there is stable point when the population is all cooperators and 
when the trait value is higher than 0.5 the only stable scenario is all 
defectors. From the equilibrium game before, we might expect the 
toxin production value to be around z* = 0.107(3s.f.). This gives an 
initial element to the gain vector of, d0 = 0.00237 (3s.f.), and a final 
element of, d0 = 0.000457 (3s.f.), with no sign change in between. 
This indicates that the ESS solution to the static game would give a 
fully cooperative equilibrium in the dynamic game given these pa-
rameters. Further, from Peña and Nöldeke (2018) (proposition 1), we 
can see that as group sizes increase the equilibrium proportion of 
cooperation will decrease.

(21)ai =
1

1 + e−(y+iy−k)
(1−ay)

(22)bi =
1

1 + e−(iy−k)

(23)d(i) = ai−bi

(24)d = (d0,d1,… ,dn)

F IGURE  6 This figure shows the dynamics of a population of 
cooperators and defectors as described by Equation (10). Each 
point represents a population with n group size and cooperators 
that produce z toxin. Using the criteria for the gain sequence for 
each population, we classify it as either a defector only equilibrium 
a cooperator only or a mixed equilibrium where the two strategies 
co-exist. The graph was drawn using the parameters, a =

2

3
 and 

k = 2
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